
IJSRSET151575 | Received: 16 October 2015 | Accepted: 26 October 2015 | September-October 2015 [(1)5: 375-382]

© 2015 IJSRSET | Volume 1 | Issue 5 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Science and Technology

375

A Study on Monitoring of Visitors in Dynamic Network
Dr. M. Sivasakthi1, M. Nester Jeyakumar2

1
Asst. Professor & Head, Department of MCA, MASS College of Arts and Science, Chennai, Tamilnadu, India

2
Asst. Professor, Department of Computer Science, Loyola College, Chennai, Tamilnadu, India

ABSTRACT

Wireless Network is very broad area, which include set of nodes those communicate through radio waves.

Dynamics and Portability are important aspect of Wireless Network. In this paper we present a monitoring system

for a dynamic network, in which a set of domain nodes shares the responsibility for producing and storing

monitoring information about a set of visitors. This information is stored persistently when the set of domain nodes

grows and shrinks. Such a system can be used to store traffic or other logs for auditing, or can be used as a

subroutine for many applications to allow significant increases in functionality and reliability. The features of the

system include authenticating visitors, monitoring their traffic through the domain, and storing this information in a

persistent, efficient, and searchable manner. From a theoretical outlook our system performs fighting fit, but it

would certainly be interesting to see how it would perform in real life.

Keywords: Survivable Monitoring, Network Intrusion Detection, Emergency Communication

I. INTRODUCTION

In dynamic network, network configuration being

rearranged at every time when subscriber moves into

different base station. Dynamic overlay networks have

recently attracted a lot of attention due to the enormous

interest in peer-to-peer systems and wireless ad-hoc

networks.

We present a monitoring system which collects and

stores information about visiting participants in a

network. The information is made available upon

request and can be subsequently analyzed and used for

any purpose by an administrator. Methods for

authentication ensure that visitor nodes are identified

before being allowed to communicate; message

encryption within the network ensures that no node can

impersonate a domain node or send messages through

the domain nodes except through the proper monitoring

process.

Depending on how the information collected by the

system and it is being used, there are several

applications such as persistent audit logs, network

intrusion detection, and emergency systems.

1.1 Problem description

We assume that there is two different kinds of nodes,

visitors and domain nodes, and that the visitors are

untrusted and the domain nodes are trusted. The task of

the domain nodes is to monitor all activities of the

visitors which involve the network. They also store a

distributed database containing recorded monitoring

information for all visitors. There are three components

to this monitoring process:

 Traffic of the visitors has to be cached.

 The intercepted traffic must be processed to

produce relevant monitoring information.

 This information must be stored permanently.

We focus primarily on the last of these, studying

a distributed database and algorithms for the

storage of this information. The requirements of

such a database are as follows:

Authentication: The system must be able to identify

visitors accurately to ensure that stored information can

be correctly matched to a visitor.

Search ability: The database must be searchable, in the

sense that an administrator must be able to acquire all

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

376

information about a particular visitor wishing to connect

to the network.

Persistence: The database must be persistent, in the

sense that no entries in the database can be lost by

network disruptions.

Efficiency: The algorithms for maintaining and using

the database should run with minimal communication

and computational overhead.

II. METHODS AND MATERIAL

A. Related Work

Emergency communication systems are becoming

increasingly popular but, none of the existing and

proposed systems operates over a dynamic network and

provides an open access policy that allows visitors to

communicate; see [20] for a survey of existing

emergency systems. Intrusion detection for distributed

systems is a very active research area and several

systems have been proposed that can be classified based

on the approach employed by the detector.

For instance, DIDS [17] and NSTAT [9] are systems

based on the centralized analysis approach where audit

data is collected on individual nodes and then reported

to a centralized location where the intrusion detection

analysis is performed. In GrIDS [18] and EMERALD

[7], systems based on the hierarchical analysis approach,

audit data is collected and analyzed by each node and

the results of the analysis is reported according to some

hierarchical structure.

We study the load balancing and recovery mechanisms

built on top of the overlay network SPON [14], which

was designed for reliable broadcasting in dynamic

networks. Extensive research has been recently carried

out on the design of overlay networks that support

arrivals and departures of nodes. Recent systems

projects on such networks include Freenet [4], Ohaha

[11], Archival Intermemory [3], and the Globe system

[1].

Theoretically well-founded peer-to-peer networks have

also been presented, such as Pastry [15], Tapestry [10],

Chord [19] along with SPON. With the exception of

SPON, the topologies of these networks are based on

DNS-like, hyper cubic, or random constructions, which

are either not useful or far too complex .Recently, a new

backup system based on peer-to-peer overlay networks

has been proposed in [5], similar to an approach

previously suggested in other works, including, for

example, [2, 6, 7, 13, 16]; the scope of these systems is

to backup entire file systems. The storage component of

the system studied here is designed solely to store

monitoring information, allows us to fulfill our

requirements while achieving provable efficiency, which

more expensive systems cannot.

B. System Overview and Its Components

The monitoring information could be exchanged, but

this would generate significant communication overhead.

The monitoring information could be left at the domain

node that collected it, and collected only when needed;

this saves unnecessary message passing, but can cause

load imbalances and can exceed the capacity of domain

nodes. Layers of Secure Monitoring protocol are

presented herewith.

Figure 1. Layers of Secure Monitoring protocol

1. Visitors:

The visitor is responsible for authenticating its messages

by signing them, so that a domain node receiving them

can properly match the traffic to the node. Any unsigned

messages from a visitor are ignored.

 sign(): authenticate itself in its message.

2. Domain Node

Guar

d

Guar

d

GuardManage

r

Monitoring Transport Layer

Applications

Network

Vault

Proce

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

377

The monitoring transport layer receives all messages

arriving from the network. It passes messages which are

not valid domain messages to the guard process, and

routes valid domain messages to the guard and vault

processes and to any applications in use according to

their destination. It also signs all messages from the

node, from any process, to mark them as valid domain

messages.

Sign(): sign all outgoing messages as valid domain

messages

Route(): route incoming messages to appropriate

processes

The guard process verifies the identity of a visitor and

clears it with the supervisor when it first connects. On

the first and subsequent connections, the guard forwards

the visitor’s messages into the network, and also

produces monitoring information about the visitor’s

messages. We use a single guard manager in the domain

node which spawns independent guard processes for

each visitor connecting through it.

Interface of guard manager

New(): Spawn a new guard process to handle a

new visitor

Delete(): delete a guard process.

Interfaces of guard

Check():query supervisor regarding a visitor

Monitor():produce monitoring information

Forward():send a visitor’s message

Page():request a node to send monitoring

information

Upload():send monitoring information to a vault.

The vault process is responsible for the storage of

monitoring information assigned to it.

Interfaces of Vault

Join():join a heap

Leave(): leave a heap

Page(): request a node to monitoring

information to

Move(): move data to another vault

Heapify(): rearrange with neighbours in

heap

Search(): search locally stored information

for a specific node

Write(): write monitoring information

locally

3 Supervisor

The supervisor is a single domain node known by all

other domain nodes, and is also a process running on

that node which performs the supervisor functions.

Interfaces of supervisor

Insert(): add a vault to the backup heap

Remove():remove a vault from its heap

Check(): see if a visitor is in the blacklist

Update-list():update a blacklist when told

Get-lightest():return the top vault in the active heap.

Switch-heap():active the backup heap

4 Administrator

The exact functioning of the administrator is beyond the

scope of this paper. In general, the administrator initiates

data collection through broadcasts through the domain,

in order to retrieve all monitoring information about a

set of visitors. If broadcasting is not a primitive in the

domain, a strategy such as [29] can be used to perform

reliable broadcasting using a unicast primitive.

Figure 2: The flow of message from a visitor through

the network to another visitor. The Solid path is message

path and doted path is the path of some monitoring

information

Flow path of messages

Messages can be freely exchanged between domain

nodes. A message from a visitor node is stopped at the

first domain node it reaches (which may change over

time as the visitor and domain nodes move around), and

the node determines whether or not to let the visitor send

to the network by contacting the network supervisor.

The domain node monitors the traffic of the visitor after

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

378

it is cleared by the supervisor. Monitoring information is

distributed through the domain by being sent piecemeal

through the network to vaults, and can be accessed and

used by an administrator, for example to update the

network’s acceptance policies for visitors. A sample

overview of the flow of a message is given in Figure 2.

III. RESULTS AND DISCUSSION

A. Algorithm

1 Cryptographic Algorithm

Effective monitoring is only possible if untrusted nodes

cannot create multiple or false identities, and if the

complete traffic to and from an untrusted node is

monitored, filtered, and stored. Central requirements for

a monitoring system are:

1. Untrusted nodes must be uniquely identifiable.

This can be achieved via a wide range of standard

authentication techniques, from password-based systems

to digital certificates that bind node identifiers to public

keys. (This is similar to the unique network identifier in

intrusion detection systems [33, 18].)

2. Domain nodes should be able to communicate

securely.

Domain nodes should be able to communicate so that

outsiders cannot read, modify or inject messages. This

can be achieved via standard techniques although

techniques based on public-key cryptography should be

kept at minimum whenever domain nodes are mobile,

since mobile nodes often rely on battery power which

can be consumed rapidly by CPU-intensive operations.

Depending on network conditions there are a number of

standard solutions to these requirements, including

public-key cryptography, shared keys, and group key

communication protocols. we discuss a set of solutions

to these issues, designed for a single application. This

section by no means represents the only way to

implement the general system.

2 Data Management Algorithms

2.1 Guards, pages of logs, and temporary page storage

As the guard monitors the visitor, it stores this

information in a temporary fixed size page of storage

space; when this page is filled, the guard requests a

destination from the supervisor through page(), receives

a network address, and calls upload() to send the page to

the address to be stored in that node’s vault process. The

guard’s temporary page can then be erased and reused.

Collecting the data into pages improves the efficiency of

the supervisor, since each store operation includes a

certain overhead cost independent of the amount of data

being stored. But if a page is too large, or if all data is

stored at the guard, then the load can become

unbalanced.

2.2 Vaults and SPON-based heaps

For permanent storage of pages, vaults are organized

into structures based on the SPON network developed in

[14] and discussed in section 4. The SPON topology is a

rooted tree structure consisting of multiple trees of

varying depths similar to a binomial heap; it tolerates

single node insertions and removals through replacement

in constant time per operation under the assumption that

the roots of all trees are stored in an array at a supervisor

node.

On top of this topology a heap is maintained, where

heaping is performed according to the maximum space

available at a node, such that each node has at least as

much free space for storage as its children. This is done

through the heapify() calls of each node, which need to

occur only when a node joins or leaves (when its

replacement is inserted) or when a node is given

additional load. An inserted node queries its new parent

and children (as applicable).

If it has more free space than its parent, they exchange

places by exchanging adjacent node information and

informing their neighbors as well; this requires O(1)

rounds and messages. Then the node continues to move

itself up the tree querying its new parent and exchanging

until a terminal location is found; each round requires

O(1) messages and rounds of communication, and the

supervisor does not need to be involved in any of the

operations. If an inserted node or a node given additional

load has less free space than its children, it exchanges

places with the child of most free load, and continues to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

379

query its new children and exchange until it is in place.

In this way the root of the rightmost tree is always the

node with the most room.

2.3 Types of vaults and heaps

There are three types of vaults: old, spare, and active.

There are also two separate heaps maintained in the

system, the active heap and the backup heap. Active

vaults are connected to the active heap, and spare vaults

are connected to the backup heap; The root node of the

active heap is sent by the supervisor to the next guard

node to request storage for a page.

B. HEAP Structure

We study a tree-based network called SPON which

manages group updates and supports efficient

broadcasting. SPON uses a supervisor peer to maintain

the network during node arrivals and departures and

routes broadcasts using direct connections between

nodes. SPON is capable of performing reliable

broadcasting in unreliable networks.

Any root node in a slot of pair i is the root of a complete

binary tree of nodes of depth i. At most one slot pair is

fully occupied, and below this pair there is no occupied

slot. Furthermore, every root node maintains a link to

the closest root node to the right and to the left of the

array of root slots, and the leftmost and rightmost root

nodes maintain a link to the supervisor as shown in

Figure 3.

Thus, every root node in the SPON structure has a

degree of at most 4. Tree nodes maintain links to a

parent and to a left and right child (when appropriate) in

the tree, and thus have degree at most 3

1 Join and leave

A join request can be sent to any node in the system by a

new node wishing to join the network. This request is

then forwarded to the supervisor, who then processes the

request through a function called Integrate(v) to insert a

new node v into the data structure. When some node w

leaves the system, it performs a function called

Replace(w,N[w]) so the supervisor can replace it with a

new node reconnected to N[w].

The operation UpdateRootLinks() in these functions

makes sure that at the end the links between the root

nodes satisfy Invariant 4.1. For a possible outcome, see

Fig. 4. Next we show that the algorithms Integrate and

Replace indeed preserve Invariant 4.1.

1. A sample network containing 20 nodes.

2. Node w joins; the supervisor assigns u and v to be

its children.

3. Node q leaves; the supervisor selects a as its

replacement and sends a’s children b and c to the

open slots in level 0.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

380

Figure 5:

1. A sample network containing 21 Nodes

2. Node x joins the supervisor place it in open slot pair

0

3. Node w leaves; the supervisor remove w from its slot

and place w’s childrean in pair 0.the existing root node

shifted to pair 2.

C. Analysis

1. Control messages

We analyze the cost of control messages through the

following comparison to the cost of data movements.

 Lemma 6.1.1: Except for messages to process nodes

joining and leaving heaps, control message cost is at

most a constant multiple of data movement cost. Proof.

Other than nodes joining and leaving heaps, control

messages are triggered by two types of events: visitor

communication and page movement.

The initial communication of a visitor to a guard causes

the guard to check with the supervisor to see if the node

is okay; this requires constant work. An optimal

algorithm still must send the message from the visitor to

its destination. Hence, for the visitor communication the

algorithm only creates a constant overhead and is

therefore constant competitive. Page movement control

messages are identical regardless of whether a page is

moved from a guard to a vault or from one vault to

another: the source process must request a destination

node from the supervisor, which responds, and after

moving the data, the destination node may need to

heapify itself.

This total process requires up to O(log n) messages. But

a page of data is moved in this process, and since we

assumed above that a page of data is by at least a

logarithmic factor larger than a control message, the cost

of sending control messages in this case is within a

constant factor of sending pages of data, which

completes the proof of the lemma.

Notice that node join and graceful leave operations can

be processed with O(1) control messages in SPON.

Hence, we can ignore the cost of control messages in our

competitive analysis.

2. Data movements

Recall that OPT denotes any algorithm with an optimal

cost for every sequence of operations. When data is

written to the active heap in our algorithm, the optimal

algorithm OPT may instead write the data to a different

node in the active heap or to a node in the backup heap.

Let us consider a sub optimal extension of OPT, SUB,

which always writes the data first to a node in the active

heap; this is always possible since the active heap is by

definition not full, since if it fills it stops being active. If

OPT would have assigned that data to a node currently

in the backup heap, then SUB moves the data to that

node when its first node fails.

From these rules it follows that the cost of SUB is at

most twice the cost of OPT under any circumstances,

because it moves any set of data at most twice as often

as OPT.

Lemma 2.1: The amount of data in the vaults in the

backup and active heaps in the algorithm is at most the

amount in the same vaults in SUB.

Proof. This holds because in the algorithm all nodes not

in the backup and active heaps are full (in the sense of

having less than a page free), and consequently must be

holding at least as much information as SUB and OPT

can hold in these nodes.

Lemma 2.3: Data movements caused by departures of

vaults not in the active heap is constant competitive to

SUB.

Proof. At time t, let A be the set of vaults in the active

heap, B the vaults in the backup heap, S the set of all old

vaults (not in either heap), and V the entire set of vaults,

so that V = A B S. Of the load stored in A B in

both algorithms, some will have been first placed in A

B and some will have been moved in when a vault in S

departed. Because SUB places data first in the currently

active set, the amount of load in A B placed in A B

to begin with is the amount of load placed in A to begin

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

381

with, which is the same in both algorithms since both

first place all load in A. According to Lemma 5.2, SUB

must have at least as much load in A B as our

algorithm. Therefore SUB must have moved at least as

much data into the active heap from vaults not in the

active heap as in the algorithm.

IV. CONCLUSION

We deliberated an efficient monitoring system for

dynamic networks. The system produces and stores

monitoring information in a persistent manner about

visiting nodes in the network. The information is

searchable and available to system administrators. Here

a novel data reallocation mechanism that ensures that no

monitoring information is lost even if several nodes

depart ungracefully. The storage process is O(log n)-

competitive in the number of network messages with

respect to an optimal offline algorithm and this is as

good as any online algorithm can be. Hence, from a

theoretical perspective the monitoring system performs

well. The monitoring system can be used as a building

block for the collection of persistent audit logs, network

intrusion detection, and in emergency systems.

V. REFERENCES

[1] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P.

Verkaik, I. van der Wijk, M. van Steen, and A.

Tanenbaum. The Globe distribution network. In

Proceedings of the 2000 USENIX Annual

Conference (FREENIX Track), pp. 141-152, 2000.

[2] C. Batten, K. Barr, A. Saraf, and S. Trepetin.

pStore: A secure peer-to-peer backup system.

Technical Report, MIT Laboratory for Computer

Science, December 2001.

[3] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S.

Sobti, and P. Yianilos. A prototype imple-

mentation of archival intermemory. In Proceedings

of the 4th ACM Conference on Digital Libraries,

pp. 28–37, 1999.

[4] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong.

Freenet: A distributed anonymous infor- mation

storage and retrieval system. In Proceedings of the

ICSI Workshop on Design Issues in Anonymity

and Unobservability, Berkeley, 2000.

http://freenet.sourceforge.net.

[5] L.P. Cox and B.D. Noble. Pastiche: making backup

cheap and easy. In the Fifth USENIX Symposium

on Operating Systems Design and Implementation,

December 2002, Boston, MA.

[6] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris,

and I. Stoica. Wide-area cooperative storage with

CFS. In Proceedings of the 18th ACM Symposium

on Operating Systems Principles.October 2001.

[7] S. Elnikety, M. Lillibridge, M. Burrows, and W.

Zwaenepoel. Cooperative backup system. In the

USENIX Conference on File and Storage

Technologies, Monterey, CA, January 2002.

[8] Jinho Ahn, Fault-tolerant Mobile Agent-based

Monitoring Mechanism for Highly Dynamic

Distributed Networks, International Journal of

Computer Science Issues, Vol. 7, Issue 3, No 3,

May 2010

[9] R. A. Kemmer. NSTAT: A Model-based Real-

Time Network Intrusion Detection System.

University of California-Santa Barbara Technical

Report TRCS97-18, Nov. 1997.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S.

Rhea,H.Weatherspoon, W.Weimer, C.Wells, and

B. Zhao. OceanStore: An architecture for global-

scale persistent storage. In Proceedings of the 9th

International Conference on Architectural Support

for Programming Languages and Operating

Systems (ASPLOS 2000), pp. 190–201,2000.

[11] Ohaha, Smart decentralized peer-to-peer sharing.

http://www.ohaha.com/design.html

[12] P.A. Porras and P.G. Neumann. EMERALD: Event

Monitoring Enabling Responses to Anomalous

Live Disturbances. In 19th National Information

System Security Conference (NISSC), 1997.

[13] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H.

Weatherspoon, and J. Kubiatowicz. Maintenance-

free global data storage. IEEE Internet Computing,

5(5):40-49, Sept. 2001.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

382

[14] C. Riley, C. Scheideler. Guaranteed Broadcasting

Using SPON: Supervised Peer Overlay Network.

Technical report, Johns Hopkins University, 2003.

http://www.cs.jhu.edu/~chrisr/papers/spon tr.ps.gz.

[15] Rowstron A and P. Druschel. Pastry: Scalable,

distributed object location and routing for large-

scale peer-to-peer systems. In IFIP/ACM

International Conference on Distributed Sys- tems

Platforms. Germany, Nov. 2001.

[16] Rowstron A and P. Druschel. Storage management

and caching in PAST, a large-scale, persistent peer-

to-peer storage utility. In Proceedings of the 18th

Symposium on Operating Systems Principles

(SOSP ’01), pp. 188–201, 2001.

[17] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan,

L.T. Heberlein, C. Ho, K.N. Levitt, B. Mukherjee,

S.E. Smaha, T. Grance, D.M. Teal, and D. Mansur.

DIDS (Distributed Intrusion Detection System)-

Motivation, Architecture, and An Early Prototype.

In Proceedings of the 14th National Computer

Security Conference, October 1991.

[18] S. Staniford-Chen, S. Cheung, R. Crawford, M.

Dilger, J. Frank, J. Hoagland, K. Levitt, C. Wee, R.

Yip, and D. Zerkle. GrIDS-A Graph Based

Intrusion Detection System for Large Networks. In

20th National Information System Security

Conference (NISSC), October 1996.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,

and H. Balakrishnan. Chord: A scalable peer-to-

peer lookup service for Internet applications. In

Proceedings of the 2001 Conference on

Applications, Technologies, Architectures, and

Protocols for Computer Communications

(SIGCOMM 2001), ppp. 149–160, 2001.

[20] Murray Turoff. Past and Future Emergency

Response Information Systems. In Communica-

tion of the ACM, April 2002/Vol. 45, No.4. Pages

29-32.

